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Grain reconstruction of porous media: Application to a low-porosity Fontainebleau sandstone
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The fundamental issue of reconstructing a porous medium is examined anew in this paper, thanks to a
sample of low-porosity Fontainebleau sandstone that has been analyzed by computed microtomography. Vari-
ous geometric properties are determined on the experimental sample. A statistical property, namely, the prob-
ability density of the covering radius, is determined. This is used in order to reconstruct a porous medium by
means of a Poissonian generation of polydisperse spheres. In a second part, the properties of the real experi-
mental sample and of the reconstructed one are compared. The most important success of the present recon-
struction technique is the fact that the numerical sample percolates despite its low porosity. Moreover, other
geometrical features and conductivity are found to be in good agreement.
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I. INTRODUCTION

Thresholded Gaussian field techniques have becom
standard tool for the reconstruction of the microstructure
consolidated porous media, and were applied over the
decade to obtain good predictions of the transport prope
of many types of materials. An historical account, a desc
tion of the implementation and a set of applications are p
vided by Adler and Thovert@1#. A major advantage of this
approach is the absence of any adjustable parameters.
reconstruction is based on statistical geometrical d
namely, the porosity and spatial correlation function, pos
bly position dependent, which can be measured on
samples by standard image analysis. The most usual im
mentations make use of moving average or Fourier transf
methods to generate the underlying continuous correla
field to be thresholded to obtain the binary phase funct
with the desired statistical characteristics.

An alternative approach uses simulated annealing to
rectly generate the phase function, according to the s
kind of geometrical conditioning parameters@2–5#. This
technique allows one to introduce additional constrain
such as higher order statistical moments, but is computat
ally much more demanding.

The former techniques are purely geometric, in the se
that they do not attempt to simulate the actual genesis of
porous material. If the microstructure results from know
mechanisms, it is appealing to directly incorporate t
knowledge in the simulation procedure. For instance, s
mentary rocks result from the deposition of grains follow
by a consolidation, due to various diagenetic processes.
spite the consolidation, the underlying grain packing str
ture may still be visible. Hence, another class of reconstr
tion procedures consists in the simulation of the genera
processes, i.e., of the primary grain sedimentation follow
by diagenetic processes such as compaction and cem

*Deceased.
†Retired.
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tion. The first step can be achieved, for monodisperse
polydisperse grain size distributions, e.g., by using the
merical tools developed by Coelhoet al. @6#. The second step
requires additional information, relative to the kinetics of t
consolidation process, which determines the final morph
ogy of the pore space. O” ren et al. @7#, Biswal et al. @8# and
O” ren and Bakke@9# describe such a model, which include
various consolidation mechanisms, with several fitting p
rameters.

The purpose of this paper is to present a reconstruc
technique, which introduces an underlying granular str
ture, but only makes use of geometrical parameters that
be measured on images of real samples. From this s
point, the methodological approach is the same as for
correlation technique; all geometrical quantities are m
sured and a medium is generated with the same statis
characteristics. This technique is based on a Poissonian
etrable sphere model, conditioned by the experimental s
size distribution. Thus, the size distribution of the solid pha
should be quantified in the first place, and a sizing techni
that provides the required information is introduced. The
techniques are applied to the analysis of a low-porosity F
tainebleau sandstone sample, based on a high-resolu
three-dimensional digital image obtained by x-ray compu
microtomography~CMT!. First, the geometry and the tran
port properties of the real sample were thoroughly charac
ized. Then, the same analysis was repeated on a numeri
reconstructed sample, which allows a direct assessmen
the merit of the reconstruction algorithm, with respect to
variety of geometrical and transport-related criteria. Spe
emphasis is put on the quantification of local variability
the real material, and on its rendering in the reconstruc
one.

This paper is organized as follows. The first three secti
are devoted to a general description of the methods.
geometrical characterization tools used in this study are
sented in Sec. II. This includes the first two statistical m
ments of the phase function, i.e., porosity and autocorrela
function, and the solid size distribution, which is used f
©2001 The American Physical Society07-1
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conditioning the reconstruction procedure. Other geometr
characteristics, such as the skeleton of the pore space
used to compare the properties of the real and reconstru
samples. The reconstruction procedure is described in
III. The methods of solution for the transport propertie
namely, percolation and conduction, are presented
Sec. IV.

The rest of the paper describes an application of th
characterization and reconstruction tools. A thorough
scription of the experimental sample is given in Sec. V. T
CMT data are described, and the rock geometrical and tr
port properties are examined. Spatial heterogeneity is in
tigated by considering the various properties at differ
scales. The same analysis is conducted in Sec. VI on a
merically reconstructed sample. A systematic compariso
made with the data directly obtained from the CMT imag

Finally, the main results are summarized in Sec. VII.

II. GEOMETRICAL CHARACTERIZATION OF A POROUS
MATERIAL

A. The phase function and its statistical moments

The microstructure of a porous medium can be fully d
scribed by the phase functionZ

Z~x!5H 1 if x belongs to the pore space

0 otherwise,
~1!

where x denotes the position with respect to an arbitra
origin. In most practical cases,Z is known from two- or
three-dimensional binary digital images, made of pixels
voxels with sizepx , or given in the elementary cubes wit
size a that constitute reconstructed numerical samples.
phase function is then defined at discrete locationsx, corre-
sponding to the positions of these elementary volum
which are assumed to be entirely filled with either pha
void or solid.

In view of the random character of most real materials
is quite natural to describe the phase functionZ by its statis-
tical moments. The porositye and the spatial correlation
RZ(u) can be defined by the statistical averages~which are
denoted by bracketŝ•&)

e5^Z~x!&, ~2!

RZ~u!5
Š@Z~x!2^Z&#@Z~x1u!2^Z&#‹

e~12e!
. ~3!

For homogeneous and isotropic materials,RZ is a function of
the modulus of the lagu5iui only, RZ(u)5RZ(u). Notice
that e(12e) in Eq. ~3! equals the variancesZ

2 sinceZ2(x)
5Z(x). A characteristic length scale of the microstructure
provided by the correlation lengthL, which is defined as the
integral of the correlation function

L5E
0

`

RZ~u!du. ~4!
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In anisotropic media, the correlations foru parallel to thex,
y, andz axes are denotedRZx , RZy , andRZz , respectively.

In heterogeneous media, the statistical moments of
phase functions can be position dependent. In particular
gional variations of the first moment may exist. A positio
dependent porosity fieldē(r) can be defined as the loca
average^Z&V of the phase functionZ over domainsV of
arbitrary sizeL centered atr. The statistical distribution of
this field can be quantified, as well as the variancesē

2 and
spatial correlationCē(u)

sē
2
5^~ ē2e!2&, ~5a!

Cē~u!5^@ ē~r!2e#@ ē~r1u!2e#&. ~5b!

The bracketŝ & denote here an averaging over the positi
r, ande is the overall mean porositye5^Z&5^ē(r)&. These
quantities can possibly be used to condition subsequen
constructions of heterogeneous media.

In addition, they can be analyzed as functions of the
eraging domain sizeL. The local porosity theory makes us
of local porosity and local percolation probability distribu
tions, either to predict macroscopic transport properties@10#,
or as a reference criterion for the assessment of pore-s
models@11,12#, as done here in Secs. V and VI.

B. Solid size distribution

Sandstones are sedimentary rocks, which result fr
deposition of quartz grains followed by consolidation. F
instance, an underlying grain-packing structure is still clea
visible in Fig. 1, despite a strong consolidation. It is tempti
to use this feature as the starting point for the reconstruc
procedure. Thus, the size distribution of the solid pha
should be quantified, in order to condition the reconstruc
samples.

Of course, the primary constitutive grains are not direc
visible on binary images due to cementation. It is not o
purpose, however, to identify the primary grains and the
ment, in order to successively simulate the grain deposi
and the subsequent diagenetic processes. Instead, we loo
a description of the solid size distribution, which could
used in a purely geometrical simulation procedure to mim
the microstructure of experimental granular samples, reg
less of their genesis.

A sizing technique that provides such information is d
scribed in this section. It is based on classical mathemat
morphology concepts. The theoretical background is give
details by Matheron@13# and Serra@14#. A simple introduc-
tion to some of the basic concepts used here is also prov
by Horgan@15#. Thus, the novelty does not lie in the mat
ematical apparatus, but rather in its actual implementa
for two- or three-dimensional images of rocks, and in
subsequent use in a reconstruction procedure, in orde
render specific features of the real material.

We will define here the covering radiusr c for each point
in the solid phase of a porous medium, which correspond
mathematical morphology to a sizing by openings. The f
lowing presentation is kept as simple as possible. In part
7-2
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GRAIN RECONSTRUCTION OF POROUS MEDIA: . . . PHYSICAL REVIEW E63 061307
lar, we always suppose that the structuring elementB is a
ball ~disk or sphere!, although all the following is also valid
for squares or cubes, which may be, sometimes, of inte
The three references above provide the general formulas
other shapes ofB.

The dilation of the domainA ~representing here the soli
phase! by a structuring elementBl ~here a ball with radius
l) is the setA% Bl covered by all the translations ofBl

centered inA

A% Bl5ø rPA,sPBl
~r1s!. ~6!

The erosion is the dual operation, corresponding to the d
tion of the complementaryAc of A. It corresponds to all
points inA not covered by a ballBl centered out ofA

A*Bl5~Ac
% Bl!c. ~7!

It can also be viewed as the locus of the centers of the tr
lations ofBl entirely contained inA. The openingABl

~or in

short Al) by Bl is the result of an erosion followed by
dilation

ABl
5Al5~Ac*Bl! % Bl . ~8!

The main effects of an erosion are to shrink the size ofA, and
to remove its components that are too small to containBl .
Conversely, a dilation increases the size ofA, fills small in-
ner holes and possibly connects components ofA separated

FIG. 1. Three-dimensional view of the CMT image of the e
perimental sample. The dimensions are 5123 voxels, i.e.,
(3.23 mm)3.
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by a narrow gap. Finally, an opening filters out small co
vexities from the contour, but keeps the concavities and
moves the small parts ofA.

The main property ofAl for our purposes is thatAl is the
set of points inA that can be covered by a ball of radiusl
contained inA. A sizer c(r) can be associated with any poin
in A, defined as the radius of the largest ball contained inA
that coversr. In other words

r c~r!5sup$l:rPAl%, ~9a!

Al5$rPA:r c~r!>l%. ~9b!

We denoter c(r) as the covering radius ofr. It corresponds to
the sizelA(r) in Ref. @14# ~Chapter X!. It is equal to zero out
of A, i.e., in the pore space.

Note thatr c(r) is not directly related to the distancedI(r)
from r to the closest point on the boundary ofA, except for
the propertydI<r c . For instance, all points in a sphere wi
radiusL have a covering radiusr c5L.

A solid size distribution can be defined from the distrib
tion functionG of the pointwise sizer c ,

G~R!5~Volume fraction of the set!$rPA;r c~r!,R%
~10a!

512~Volume fraction of Al!. ~10b!

It is generally defined relative to the volume ofA. For con-
venience, we use here absolute volume fraction, relative
the whole porous medium volume, with

G~0!5~porosity!, G~1`!51. ~11!

The probability density functiong(R) deduced fromG con-
tains at least one Dirac contribution«d(0), andpossibly oth-
ers, if part of the solid consists of spherical grains.

Given a three-dimensional digital image of a porous m
dium, the covering radiir c , and thus the family of domains
Al and the functionsg andG are easily obtained by elemen
tary numerical analysis. Of course, the structuring elem
Bl is then the discrete version of a ball with radiusl on the
underlying lattice. Since squared distances between pi
are integer numbers, in lattice units,r c

2 is always integer.
The determination of the three-dimensional solid size d

tribution from two-dimensional images is a more difficu
stereological problem that is not addressed at this stage

The probability density functiong(R) can be viewed as a
three-dimensional extension of the lineal-path functionL(z),
defined by Lu and Torquato@16# as the probability that a line
segment of lengthz is fully in one of the phases, when ran
domly thrown into the sample. This function was evaluat
by Quintanilla and Torquato@17# for Poissonian disks and
spheres, and actually used by Yeong and Torquato@3# as the
conditioning criterion for a simulated annealing reconstru
tion procedure.

C. Topology, skeleton of the pore space

The connectivity of the pore space can be characteri
by the cyclomatic number~or genus! b1, which is equal to
7-3



p
a
c
ro

th
pe

ke
t

es

fit

th
s

of

,
a-
nd
of

in
et
/
ua
e
y

ro

rve
fol-
are
ng

eful
pil-
al

and
nal
ted

here
u-
the
that
e the
, but
n-
y
of

ng

ble

ros-

se
real
on
ea

r to
p-

is-
the

e-
res,
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the number of independent cycles in its associated gra
This graph, represented by the skeleton of the pore sp
@14#, can be viewed as a simplified image of the pore spa
analogous to a capillary network. It is determined by a p
gressive conditional thinning algorithm@18#. The cyclomatic
number is equal to

b15m2n11 ~12!

wherem andn are the number of edges and vertices in
graph, respectively. The volumetric number of cycles
unit volume is denoted byb18 .

Various statistical quantities can be measured on the s
eton. Letds denote the distance of a point on the skeleton
the closest solid. Its minimumr e along the edgee is the
critical radius of this edge, i.e., the radius of the larg
sphere that can travel alonge. The radiusr M of the largest
cavity in the sample~radius of the largest sphere that can
into the pore space! is also readily available.

More generally, statistics relative to the elements of
skeleton can be evaluated; averages, standard deviation
histograms of the radiir e or of the end-points distancede of
the edges (e51,2, . . .m), of the radii r v and coordination
number zv ~number of incident edges! of the vertices (v
51,2, . . .n), volumetric numberNv8 of vertices, and mean

coordination numberzv̄ that is related to the mean number
cycles per vertexb18/Nv8 by

b18

Nv8
5

zv̄

2
212

1

n
'

zv̄

2
21 ~n@1!. ~13!

The correlations of these quantities can also be quantified
the covarianceCee of the radii of adjacent edges, the cov
rianceCev of the radii of adjacent edge/vertex couples a
the covarianceCel of the radius and end-points distance
edges, which are defined as

Cee5
^~r e82r ē !~r e92r ē !&

s r e

2
, ~14a!

Cev5
^~r e2r ē !~r v2r v̄ !&

s r e
s r v

, ~14b!

Cel5
^~r e2r ē !~de2dē !&

s r e
sde

. ~14c!

The indicese8 and e9 in Eq. ~14a! refer to edges with a
common vertex. The average in Eq.~14b! is taken over the
pairs of connected edgese and verticesv.

It should be kept in mind that the quantities introduced
this paragraph are measured on the mathematical skel
which may differ quite significantly from an intuitive pore
throat vision of the pore space. Besides, some of these q
tities such asNv8 and zv̄ depend on the resolution of th
discretization for the calculations~see the discussion b
Bekri et al. @19#!. However, the cyclomatic numbersb1 and
b18 are unaffected by a change in spatial discretization, p
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vided, of course, that resolution is good enough to prese
the pores. In addition, the skeletons determined in the
lowing for the experimental and reconstructed samples
obtained for exactly identical resolutions, thereby allowi
meaningful comparisons.

The statistics of the skeleton elements may prove us
for other simulation purposes, for instance to provide ca
lary network models of the porous material with statistic
informations on pore diameters, coordination numbers
so on. In this paper, they are only used as an additio
criterion for the comparison of the real and reconstruc
media.

III. RECONSTRUCTION PROCEDURE

We describe in this section a Poissonian penetrable sp
model, conditioned by the experimental solid size distrib
tion. In the present implementation, the model belongs to
general class of the so-called Boolean models. Recall
Boolean models are stationary Poisson processes, wher
size and shape of the inserted objects can be randomized
with a probability law identical for all objects and indepe
dent of their position@20#. However, it is conceptually eas
to generalize the model by introducing regional variations
the porosity or of the solid size distribution, thereby loosi
the Boolean character.

General descriptions of the properties of penetra
sphere models are provided by Hall@20# and Torquato and
co-workers~see, e.g.,@21# and references therein!.

Consider first the case of monodisperse grains. The po
ity is directly related to the number densityrp of grains with
volumeVp per unit volume

e5e2mp, mp5rpVp . ~15!

The correlation function is given by

RZ~u!5
e113u8/42u83/162e2

e~12e! S u85
u

Rp
<2D ;

RZ~u!50 ~u>2Rp! ~16!

where Rp is the grain radius. Obviously, monodisper
spheres allow to match a single scalar parameter of the
medium to simulate, e.g., the initial slope of the correlati
function, which is proportional to the volumetric wetted ar
@22#.

Polydisperse penetrable spheres are required in orde
incorporate more morphological information. Such an a
proach was applied by Glasbeyet al. @23#, but with an a
priori model for the grain size distribution, whereas this d
tribution is directly deduced here from measurements on
real sample.

First note that the correlation function of a porous m
dium resulting from the superposition of penetrable sphe
with a radius probability densityf (R) ~in number of grains!
can be evaluated analytically@24#. It is given by
7-4
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RZ~u!5
ea(u)2e2

e~12e!
~17!

with

a~u!511
3

4

^R2&

^R3&
u2

u3

16̂ R3&
1

1

^R3&

3E
0

u/2FR32
3R2u

4
1

u3

16G f ~R!dR, ~18a!

522
1

^R3&
E

u/2

1`FR32
3R2u

4
1

u3

16G f ~R!dR.

~18b!

Equations~17! and ~18! can be inverted, to determin
f (R) from the correlation functionRZ , provided, of course,
that the medium actually corresponds to penetrable s
spheres. The inversion formula and the necessary crite
on RZ are given in the Appendix. Unfortunately, the inve
sion is strongly affected even by small violations of th
criterion. In addition it is very sensitive to statistical noise
the long-range part of the correlation function. Therefore,
apply in practice the alternative technique described bel
based on the solid size distribution spectrum introduced
Sec. II B. It always yields a distributionf (R) that allows to
mimic the solid size distribution in the real medium, ev
though its solid phase is not likely to be made up of pe
etrable spheres, and it is less sensitive to statistical fluc
tions.

It has been shown in Sec. II B how the covering rad
r c(r), i.e., the radius of the largest sphere entirely lying
the solid and coveringr, can be determined for any pointr in
the solid phase. The sphere size distributionf (R) will be
determined from the probability densityg and the distribu-
tion functionG of the covering radius

g~r !dr5Volume fraction of points withr<r c,r 1dr,

~19a!

G~r !dr5E
0

r

g~s!ds5Volume fraction of points withr c,r .

~19b!

Obviously, many spheres will be partially or total
masked by larger ones@see Fig. 2~a!#. The radiusr c in the
overlaps is then equal to the largest radius (R1 in the Figure!.
Conversely, the radiusr c in the largest sphere in Fig. 2~a! is
unaffected by the presence of the smaller ones. We m
here the approximation that situations like Fig. 2b are sta
tically negligible. In order to modifyr c in the large sphere to
R18.R1, it is required that it is totally surrounded by a co
tinuous shell of smaller ones, which is unlikely for larg
grains, especially in three dimensions. This is subject ta
posteriori verification, and indeed in the present applicatio
the covering radius spectrum in the reconstructed media
fers only slightly from the prescribed spectrum, with a b
towards larger radii. It should be noted however that
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simulated material has a very low porosity, about 0.0
which is the worst situation in this respect. This artifact
almost totally eliminated with larger void fractions, as show
by Yousefianet al. @25#, who consider a sandstone of poro
ity 0.17.

These remarks provide the key for the determination
the amount of grains of each size to be inserted. The lar
spheres must simply match the volume fraction of the ma
mal value of r c . Then, the amount of smaller spheres
determined from the volume fractiong(R), corrected for the
masking effect of the larger ones, i.e.,g(R)/G(R). Denote
m(R) the volumetric density of spheres with radiusR @see
Eq. ~15!

m~R!5r~R!V~R!, ~20a!

r~R!dR5Number of spheres per unit volume

with radius in @R,R1dR# ~20b!

with V(R)54/3pR3. Then, the numberr(R) of spheres of
sizeR to be inserted per unit volume is directly obtained

FIG. 2. Poissonian spheres~two-dimensional illustration!. The
covering radiusr c in the whole dark sphere in~a! is equal to its
radius R1. Situations like~b! where a continuous shell of grain
increasesr c to R18.R1 are ignored.

FIG. 3. Main steps of the penetrable Poissonian spheres
thresholded Gaussian field reconstructed procedures.
7-5
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FIG. 4. Examples of gray level~a! and binarized~b! images of a section through the Fontainebleau sandstone sample. The histog
the gray levels in the whole 5133102331023 voxels CMT image~c!. The gray levels in~c! are centered and normalized by the global me
and standard deviation.
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g~R!

G~R!
, r~R!5

1

V~R!

g~R!

G~R!
. ~21!

It is interesting to note that although a counterpart of
covering radiusr c can be straightforwardly defined in th
void phase, it probably cannot be used for the present
pose of determiningf (R). Hall @20# has shown that for poly-
disperse Poissonian disks in the plane, the statistical di
bution of the first contact distance, i.e., the distanceds from
a point in the pore space to the closest solid, only depend
the mean disk perimeter and area, whereas the distributio
dI(r) is more complex.

A parallel can be made between the Poissonian penetr
sphere model and the thresholded Gaussian field recons
tion procedure, as illustrated in Fig. 3. Recall that the thre
olded field technique@26# consists in the following steps
First generate a random uncorrelated Gaussian field,X(r).
Convolve it with a kernel derived from the correlation fun
tion RZ to obtain a correlated Gaussian fieldY(r). Finally,
the phase functionZ(r) is equal to 1 whereY exceeds a
threshold that depends on the target porosity.

The generation of the grain center locations correspo
to the generation of the initial random fieldX. Then, spheres
with a prescribed size distribution are inserted and a Poi
nian correlated fieldY(r) can be defined as the number
spheres coveringr; finally, the phase functionZ is again
obtained by thresholdingY. In both cases, the definition ofY
incorporates the same type of geometrical information
rived from the experimental porosity and spatial correlatio

The main difference is that only a certain class of cor
lation functions can be generated with the Poissonian mo
whereas no such limitation exists with the Gaussian fi
technique.

The penetrable sphere model can also be regarded
variant of the generating technique of Di Federico and N
man @27#, who also superpose uncorrelated fields with ide
tical correlation functions within a change of scale. Only t
shape of this correlation is different, given here by Eq.~16!,
instead of a Gaussian or exponential function.

Both the thresholded Gaussian field and the Bool
methods offer no control over the statistical moments of
phase function, beyond their mean and two-point correlat
06130
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Higher-order moments, such as three- and four-point co
lations, are determined by the reconstruction procedure,
may differ in the Poissonian and Gaussian models. T
point is not addressed in the present paper, but the three-
four-point correlations in a real sandstone and in porous
dia reconstructed by using both the penetrable spheres
thresholded Gaussian fields techniques are systemati
compared by Yousefianet al. @25#.

IV. MACROSCOPIC PROPERTIES: METHODS
OF SOLUTION

We show in this section how some of the macrosco
properties of porous media can be numerically determi
@26#.

A. Percolation

The first property to be determined is whether the p
space in the material percolates or not, i.e., whether a c
tinuous path through the pore space exists between two
posite faces of the sample. In the absence of percolation
the macroscopic coefficients for transport processes in
pore space are trivially zero.

Unless otherwise stated, we considered only percola
along a single direction, corresponding to thex axis. Hence,
a sample is said to percolate when its two opposite fa
normal to this direction can be connected through the p
space; this corresponds to the ruleR1 as defined by Reynolds
et al. @28#. The percolation status of the samples w
checked by use of a pseudodiffusion algorithm, as descri
by Thovertet al. @18#.

B. Conductivity

At the macroscopic scale, an isotropic porous medium
be characterized by a macroscopic conductivity coeffici
D̄, which only depends on its microstructure. When the p
space is filled by a conducting fluid of conductivitys0, the
porous medium has an effective conductivitys0D̄. The elec-
trical terminology is used here but the following develo
ments are also valid for thermal conduction and for diffusi
of particles whose size is small with respect to a typical p
size.
7-6
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In order to determineD̄, one has to solve Laplace’s equ
tion

¹2T50, ~22!

where T is the potential field, together with the no-flu
boundary condition at the surface of the solidSp , when the
solid phase is assumed to be insulating

m•“T50, on Sp , ~23!

wherem is the unit normal vector toSp . This hypothesis of
insulating solid phase is well verified for sandstones. T
Neumann problem~22! and~23! is solved via a second-orde
finite-difference formulation, by use of a conjugate-gradie
method@29#.

We determine the conductivity coefficientD̄ along thex
direction, by imposing constant potentials at the upstre
and downstream faces of the sample, and no-flux condit
on the four other faces.D̄ is obtained from

Q

S
52s0D̄

DT

Dx
, ~24!

whereQ is the total flux,S is the sample cross-section ar
andDT is the potential jump.

V. ANALYSIS OF THE EXPERIMENTAL SAMPLE

This section is devoted to a thorough characterization
the geometrical and transport properties of the experime
sample. The rock under consideration is a low-porosity F
tainebleau sandstone. The acquisition of a digital thr
dimensional image by x-ray CMT and part of the subsequ
analysis have been presented by Thovertet al. @30#.

A. CMT data

A piece of a cylindrical plug, 5.4 mm in diameter, wa
imaged at ESRF~Grenoble! by x-ray CMT. Gray level im-
ages of 513 serial slices were obtained, made up of 1
31023 pixels, of sizepx56.3 mm. These images were ea
ily and unambiguously binarized, thanks to a clearly bimo
distribution of the gray levels~see Fig. 4!.

A parallelepipedic subsample was cut from this ima
with dimensions 5123 voxels, i.e., (3.23 mm)3; it is entirely
contained in the core. A three-dimensional visualization
the investigated subsample is provided in Fig. 1. In the
lowing, the x and y axes are contained in the slice plane
whereas thez axis refers to the direction normal to the slice

B. Geometrical characterization

1. Global geometrical measurements

Porosity was measured in 5123512 sections through th
sample, along thex, y, andz directions. The correspondin
profiles are plotted in Fig. 5. No definite trend is observ
along thex andy axes. The surface-averaged porosity var
tions around the global average are of the order of 1%. In
z direction, i.e., along the axis of the plug, a change in p
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rosity seems to take place around section 316. The m
porosities on either sides differ by about 0.01. The poros
measured in the whole retained sample volume ise
50.0692.

The correlation functionsRZx , RZy, and RZz along the
three axes have also been measured in (x,y), (x,z), and
(y,z) sections. No significant variations exist, as shown
the example in Fig. 6, whereRZx measured in successiv
(x,y) sections is plotted versus the lag.

The correlationsRZx , RZy , and RZz averaged over the
whole volume are displayed in Fig. 7, in Cartesian and se

FIG. 5. Porosity profilese(x) ~a!, e(y) ~b!, and e(z) ~c! in
5123512 voxels sections normal to the coordinate axes, in the
perimental sample. The broken lines are the overall average
the 5123 volume. The dotted lines in~c! are separate averages ov
the 316 first or 196 last sections.

FIG. 6. Correlation functionRZx measured in successive (x,y)
sections through the experimental sample.
7-7
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FIG. 7. Correlation functions along the direc
tions x ( ), y (•••••) and z (2•2•2) in
the experimental sample, versus the lag in m
crons, in Cartesian~a! and semilogarithmic~b!
coordinates.
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logarithmic scales. The material appears to be slightly an
tropic. RZx andRZy are identical, butRZz decreases slightly
faster. The correlation lengthsLx andLy are larger thanLz
by about 4%~see Table I!.

The semilogarithmic plot in Fig. 7 shows that the corr
lation functions are well described by a negative exponen
up to a distance of about 100mm where RZ becomes
smaller than 1022

RZ~u!5e2u/l, u,100 mm. ~25!

The decay lengthsl, obtained by a least-square fit over th
data for lags up to 12 pixel sizes (75mm), are given in
Table I. They are in good agreement with the correspond
lengthsL. For longer lags, a slight anticorrelation exists
the range 120–170mm; this is a reminiscence of the impen
etrability of the constitutive quartz grains, blurred by the
size polydispersity and by consolidation. Then,RZ randomly
fluctuates beyond 200mm, with a magnitude of the order o
1022 or less.

2. Multiscale analysis

Regional porosity variations were studied by consider
cubic subsamplesV of varying size. The 5123 complete
sample was split intoNb disjoint blocks containingNc

3 vox-
els, with Nc ranging from 16 to 256. Thus, the block siz
L5Ncpx ranges from 100mm to 1.6 mm. It is always sig-
nificantly larger than the correlation lengthsL or l in
Table I.

The statistical distribution of the decimal logarithm of th
porosity ē in individual blocks is displayed in Fig. 8, fo
various block sizes. As expected, all the distributions
come narrower whenNc increases.

For the smallest blocks (Nc516), a significant proportion
of the blocks ~4.9%! contains only solid. As soon asNc
>32, the probability of zero porosity vanishes, and the
rosity distributions look fairly lognormal, as shown by th

TABLE I. Correlation lengthsLx , Ly , andLz in the experimen-
tal sample, and decay lengthsl in Eq. ~25!.

x y z

L (mm) 24.8 24.6 23.7
l (mm) 24.9 24.4 23.6
06130
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comparison in Fig. 9~a! for Nc532, 64, and 128. The distri
bution functionF(y) of y5 ln(ē) is plotted as a function of
the Gaussian distribution functionG^y&,sy

G^y&,sy
~y!5

1

2 F11erfS y2^y&

A2sy
D G , ~26!

where^y& andsy are the mean and standard deviation ofy,
for each block size. The three curves are close to the
diagonal, which corresponds to a perfect fit by the lognorm
law.

The local porosity standard deviationsē is given in Table
II. It is plotted versus the measuring block size in Fig. 1
Note that the statistics are constrained by the finite size of

FIG. 8. Histograms of the decimal logarithms of the porosityē

~left! and conductivityD̄ ~right! in cubic blocks from the experi-
mental sample, for block sizesNc516, 32, 64, and 128~top to
bottom!. The vertical broken lines are the statistical averages.
7-8
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FIG. 9. Distribution functions of the loga
rithm of porosity~a! and conductivity~b! in cubic
blocks with sizeNc532 ( ), 64 (2•2•2),
and 128 (222) from the experimental sample
versus the Gaussian distribution function E
~26!. Only percolating blocks are considered
~b!, for Nc532.
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samples. WhenNc increases, the number of blocks decrea
and the overall statistical contents remain identical. Hen
the average porosity of the blocks,^ē&, is of course a con-
stant since it corresponds to the averagee of the phase func-
tion Z over the same overall volume for allNc .

The dispersion of the block porosities, quantified by t
standard deviationsē(Nc), decreases with the block sizeNc .
For blocks large enough to sample all the variations of
local porosities,sē(Nc) should decay asNc

23/2. However, a
slower decay is observed for the data in Table II and Fig.
with an exponent21.13 ~correlation coefficientr 50.9997,
up to Nc5128). This results from correlations between t
porosities in the blocks. If one assumes thatZ(r) is a station-
ary random correlated field, with a variancesZ

25e(12e)
and a spatial covarianceCZ5sZ

2RZ , the variancesē
2 is given

by

sē
2
5

1

V2EV
dr1E

V
dr2CZ~r12r2!. ~27!
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The double integral~27! can be numerically evaluated ifCZ

is given. This was done for the isotropic exponential cova
ance in Eq.~25!, and cubic domainsV ~see Fig. 10!. It
appears that the asymptotic decaysē}L23/2 is reached only
for very large domains, withL/L.20. For smaller sizes, the
numerical data are in excellent concordance with the pre
tion of Eq. ~27!.

For Nc>128, the decay rate ofsē should increase and
reach the asymptotic regimesē}L23/2. However, the statis-
tical variability predicted by Eq.~27! for a stationary me-
dium is dominated by the macroscopic variation of the p
rosity along thez direction shown in Fig. 5~c!. Hence, the
decay ofsē with Nc actually becomes slower, andsē for
Nc5256 is 0.6%, i.e., roughly half the magnitude of th
porosity step variation in Fig. 5~c!.

It is also interesting to consider the spatial organization
the locally averaged porosities. To this end, we measured
spatial covarianceCē of the local porositiesē in the Nc

3

domains. This was done for various block sizes, rang
from Nc516 to 96. The results are plotted in Fig. 11~a!, on
58
83
68
52
77
53
52

72
99
53
33
79
61
43
TABLE II. Percolation and transport properties in cubic blocks of sizeL5Ncpx , cut from the experi-
mental and reconstructed samples. Brackets^ & denote averages over the blocks;sX is the standard deviation
of X.

Nc L (mm) Nb Pp ^ē& sē ^ē&p ^D̄& s D̄ r ē,D̄

5123 CMT image of the experimental sample

16 101 32768 0.216 0.0692 0.0837 0.1641 0.0136 0.0436 0.7
32 202 4096 0.355 0.0692 0.0385 0.0943 0.0062 0.0151 0.6
64 403 512 0.580 0.0692 0.0166 0.0752 0.0027 0.0037 0.5
85 506 216 0.727 0.0692 0.0136 0.0714 0.0024 0.0025 0.5
128 806 64 0.875 0.0692 0.0080 0.0702 0.0019 0.0016 0.6
170 1070 27 0.960 0.0692 0.0075 0.0695 0.0020 0.0011 0.7
256 1610 8 1.000 0.0692 0.0053 0.0692 0.0018 0.0006 0.8

5123 Reconstructed sample

16 101 32768 0.211 0.0697 0.0926 0.1859 0.0154 0.0456 0.7
32 202 4096 0.339 0.0697 0.0452 0.1064 0.0071 0.0154 0.6
64 403 512 0.564 0.0697 0.0195 0.0779 0.0034 0.0047 0.6
96 605 125 0.736 0.0697 0.0114 0.0722 0.0024 0.0024 0.6
128 806 64 0.891 0.0697 0.0069 0.0704 0.0022 0.0016 0.6
170 1070 27 0.963 0.0697 0.0045 0.0699 0.0019 0.0011 0.3
256 1610 8 1.000 0.0697 0.0025 0.0697 0.0016 0.0008 0.4
7-9
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average over thex, y, and z directions.Cē is remarkably
insensitive to the block size, as soon as the lag exceed
voxel sizes andNc>16. Furthermore, in this range, the p
rosity covariance is less than 1024, which denotes the ab
sence of any notable spatial organization of the porosity fl
tuations. Even the variations along thez axis in Fig. 5c do
not induce significant differences between the functionsCē

in this direction and in the orthogonal ones.
In summary, this block of Fontainebleau sandstone is v

homogeneous. Local porosity fluctuations are totally
counted for by the expected statistical variability for a s
tionary medium, up to a scale of 800mm, i.e., about 5 typi-
cal grain diameters~see Sec. V B 4!. Fluctuations on a large
scale are small and without definite spatial organization.

FIG. 10. Porosityē ~a!, probability of percolationPp ~b! and

conductivityD̄ along thex direction~c!, versus the block sizeNc .
The symbols denote statistical averages (s) and standard devia
tions (* ). Data are for the real ( ) and reconstructed (222)
samples. The dotted line is the prediction Eq.~27!, for the isotropic
exponential covariance in Eq.~25!, and cubic domainsV.
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3. Topology, skeleton and size distribution of the pore space

The skeleton of the pore space was extracted from e
1283 cubic blocks from the CMT image, as described in S
II C. Care was taken to avoid edge effects, by consider
only the elements of the skeleton that are undisturbed by
boundaries. It was also checked that the block size is su
cient to obtain reliable results, by comparison with the c
responding results for smaller blocks.

The statistics for the characteristics of the components
the graph are given in Table III. Their distributions are pr
sented in Fig. 12. Note that most edges have a critical ra
r e of the order of the voxel sizepx . It will be seen in Sec.
V C 2 that the quasitotality of the pore space is connected
a single cluster. Thus, the resolution of the CMT scan
sufficient to preserve all the connectivity, but could not
much downgraded without loosing connections.

Adjacent elements of the skeletons are weakly correla
the coefficientCee for the radii of two edges with a commo
vertex is only 0.26; the radius and length of the vertices
statistically independent (Cel'0). The larger value of the
correlation coefficientCev of the radii of an edge and of its
end vertices probably results from the constraint thatr v
>r e .

4. Solid size distributions

The solid size distribution was measured in the 5123 CMT
image, as described in Sec. II B. The results are displaye
Fig. 13. Figure 13~a! is a 2562 voxels cross section throug
the block, and Fig. 13~b! is the correspondingr c field. Note
that although this plot shows only a two-dimensional secti
r c was really determined in three dimensions. The histogr
of r c and its distribution functionG in the three-dimensiona
sample are plotted in Figs. 13~c! and 13~d!, respectively.

TABLE III. Geometrical and topological parameters measur
on the skeleton of the pore space inN58 blocks of size 1283

voxels from the experimental and reconstructed samples. All

tances are in microns. The volumetric quantitiesN̄v8 andb18 are in
mm23.

N̄v8 z̄ b18 r̄ e r̄ v d̄e r̄ M
Cee Cev Cel

Exp 140 3.15 80 7.01 10.3 62.6 54.4 0.26 0.65 0.0
Rec 294 3.24 159 7.15 9.68 44.4 43.0 0.35 0.6920.008
tal
n

FIG. 11. Spatial covarianceCē of the porosi-
ties measured in cubic blocks in the experimen
~a! or reconstructed~b! samples, versus the lag i
microns. The averaging domain size isNc5 1
~heavy line!, 16 (s), 32 (h), 48 (D), 64 (¹)
and 96 (* ).
7-10
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GRAIN RECONSTRUCTION OF POROUS MEDIA: . . . PHYSICAL REVIEW E63 061307
Even though this property is not used in the reconstr
tion algorithm, it is interesting to note that the distribution
r c in the solid phase~i.e., excludingr c50) is close to Gauss
ian.

C. Percolation and conductivity

1. Numerical simulations

Since currently available computers do not allow yet
the resolution of transport equations in the full sample v
ume~about 134 million voxels!, the numerical investigation
were conducted on cubic subsamples of varying sizes f
the experimental three-dimensional images. These s
samples are the same as for the multiscale analysis of po
ity in Sec. V B 2.

Percolation and conductivity were investigated, withNc
ranging from 16 to 256, which corresponds to cubes of
mensions 0.10–1.61 mm. The smallest dimensionNcpx is
still about four times larger than the correlation lengthL
given in Table I. The largest cubes correspond to 1/8 of
whole sample volume.

2. Statistical averages

The first property to be determined for each block is
percolation status. Some of the blocks are not percolat
i.e., no continuous path exists across the blocks through

FIG. 12. Histograms of the critical edge radiir e , vertex radii
r v , edge lengthde , distance to the solid surfaceds , and of the
coordination numberzv in the skeletons of the pore space inN
58 blocks of size 1283 voxels from the experimental~left! and
reconstructed~right! samples. All distances are in microns.
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pore space. The fractionPp5Np /Nb of percolating blocks is
given in Table II and it is plotted versus the block size
Fig. 10.

Pp depends on the block size. For very small blocks,
percolating character is a random variable, since the bl
size is comparable to the characteristic length scale of
microstructure (L or l), and the blocks are not statisticall
representative. In the limiting caseNc51, Pp is exactly
equal to the porositye. For very largeNc , the blocks are
representative of the macroscopic properties of the rock,
they should all have the same percolation status, i.e.,Pp
50 or 1. A transition takes place between these two limiti
cases; assuming that the material is macroscopically ho
geneous, the value ofNc when Pp reaches its macroscopi
limit is an estimate of the scale at which the macrosco
transport properties can be safely evaluated.

In the present case,Pp is a smoothly increasing function
of Nc , andPp51 for Nc>256. The sample is percolating o
the large scale. Furthermore, the quasitotality of the p
space is accessible from the boundaries, as was dire
checked by an invasion simulation on the 5123 cubic sample.
The volume fraction of closed porosity is less than
31023, and it may originate in part from an insufficien
spatial resolution of the CMT scan.

Percolation with a porosity smaller than 0.07 is a rema
able feature, that many reconstruction procedures are un
to simulate. Recall for comparison that the percolati
threshold in three dimensions isec'0.31 for uncorrelated
site lattices andec'0.11 for homogeneous correlated med
without long-range order. A strong spatial heterogeneity
required to lowerec to 0.07, Ref.@31#.

Note also the large sample size required to ensure a
colation probability close to unity, despite the fact that nea
all the pore space is connected.

The average porositŷē&p measured only in the percola
ing samples is significantly larger than the overall average
for Nc516 ~0.164! and Nc532 ~0.094!. The difference

^ē&p2e rapidly vanishes for larger block sizes, and it
smaller than 0.002 as soon asNc>85.

The averagêD̄& of the conductivity over all blocks~per-
colating or not! is given in Table II and Fig. 10, togethe
with its standard deviations D̄ . In all cases, it decreases wit
the block sizeNc , but it roughly stabilizes at̂D̄&'0.002
when Nc>128 ~block size>0.80 mm). The decay rate o
the standard deviations D̄ with the averaging block sizeNc is
fairly constant and faster than for the porosity fluctuationssē

(s D̄}Nc
21.54,r 50.995, forNc516 to 256!.

3. Statistical distributions

The statistical distribution of the decimal logarithm
conductivity in individual blocks is displayed in Fig. 8, fo
various block sizes. Again, all the distributions become n
rower whenNc increases, and just like porosity, conductivi
is well described by a lognormal probability law, as show
by the plot of the distribution function of ln(D̄) in Fig. 9~b!,
provided of course that the nonpercolating blocks are
cluded from the statistical sample.
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FIG. 13. Covering radius in
the experimental sample.~a! is a
2562 voxels section through the
block and~b! the correspondingr c

field. The global histogram and
distribution function of r c are
plotted in~c! and~d!, respectively.
All distances are in microns.
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4. Correlation between local porosity and conductivity

The conductivities of individual blocks are plotted vers
the corresponding porosity in Fig. 14, in Cartesian~for all
blocks! and logarithmic~for percolating blocks! coordinates.

Of course,D̄ is globally an increasing function ofē, but
the data are very scattered. For small blocks (Nc516, block
size5100mm), the data cover quasievenly the whole regi
between the two linesD̄50 andD̄5 ē, which correspond to
the general Wiener’s@32# bounds. WhenNc increases, the
range of observed porosities decreases. Simultaneously
upper limit of the domain containing the data points lowe
Finally, for Nc5128 ~sample size5 800 mm), the data are
distributed between the two linesD̄50 andD̄5 ē2.

The correlation coefficientr ē,D̄ of the conductivity with
the porosity of the blocks was evaluated~see Table II!. It
never reaches 0.9, which confirms the poor correlation of
local porosity and conductivity visible in Fig. 14.

VI. ANALYSIS OF THE RECONSTRUCTED SAMPLE

A. Reconstructed samples

The reconstruction procedure described in Sec. III
been applied, based on the geometrical characteristics m
sured on the real sample, namely, the global porosity and
solid size spectrum in Fig. 13. A numerical sample made
of 5123 elementary cubes was produced. The elemen
cube size corresponds to the voxel sizepx56.3 mm in the
experimental CMT image. A three-dimensional view of t
06130
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FIG. 14. ConductivityD̄ versus porosityē in cubic blocks cut in
the experimental sample, for block sizesNc516, 32, 64, and 128
~top to bottom!, in Cartesian~right! and logarithmic~left! coordi-

nates. Broken lines correspond toē in ~a! and toē2 in ~g!.
7-12



ik-

on-
s in

ter
ra-

cted
the
ne.
e

n

dii.

in
ig.
is
a-

a
red

ple

GRAIN RECONSTRUCTION OF POROUS MEDIA: . . . PHYSICAL REVIEW E63 061307
FIG. 15. Three-dimensional view of the reconstructed sam
The dimensions are 5123 voxels, i.e., (3.23 mm)3.
06130
reconstructed sample is provided in Fig. 15, which is in str
ing visual agreement with Fig. 1.

The geometrical and transport properties of the rec
structed sample were then investigated in the same way a
Sec. V for the real one.

B. Geometrical characterization

1. Solid size distribution

The solid size distribution is the conditioning parame
for the reconstruction procedure, and thus, the covering
dius spectra in the real and simulated materials are expe
to be in good agreement. Figure 16 is the counterpart for
reconstructed sample of Fig. 13 for the experimental o
Figure 16~a! is a 2562-voxels cross section through th
block, Fig. 16~b! is the correspondingr c field, and Figs.
16~c! and 16~d! show the histogram and distribution functio
of r c , respectively.

The general features of the histograms ofr c are indeed
very similar, with the same balance of small and large ra
However, the histogram in Fig. 16~c! is slightly shifted to-
wards larger radii. The curve for the distribution function
Fig. 16~d! is quasi-identical to the corresponding one in F
13~d! within a translation of about one voxel size. This
probably due to discretization effects, and to the approxim
tion mentioned in Sec. III, by which the possibility that
sphere surface is totally covered by smaller grains is igno
when deriving the sphere size distributionf (R) from the
covering radius spectrum via Eq.~21!.

.

FIG. 16. Covering radius in
the reconstructed sample.~a! is a
2562 voxels section through the
block and~b! the correspondingr c

field. The global histogram and
distribution function of r c are
plotted in~c! and~d!, respectively.
All distances are in microns.
7-13
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FIG. 17. Comparison of the correlation func
tions RZ in the real ( ) and reconstructed
(222) samples. Linear~a! and semilogarithmic
~b! coordinates. The lag is given in microns.
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2. Global geometrical measurements

The porosity of the reconstructed sample is equal
0.0697, i.e., it exceeds the prescribed value by 231024. This
small difference is only due to statistical fluctuations.

The spatial correlations of the original and simulated m
dia are compared in Fig. 17. They differ in two respec
First, the small anticorrelation observed in the real medi
in the range 100–200mm does not exist in the reconstructe
one, in agreement with Eq.~17!, since there is no steric ex
clusion between the Poissonian spheres. Second, the d
of RZ is slightly slower in the reconstructed sample. T
semilogarithmic plot shows that the correlation is still exp
nential for lags up to 100mm, as given by Eq.~25!, but with
a decay lengthl527.9 mm, i.e., 12% longer than in the rea
material, or about half a voxel size. This is a consequenc
the shift of the covering radius spectrum mentioned in S
VI B 1. No long-range correlation exists in the reconstruc
sample, sinceRZ in Eq. ~17! vanishes when the lagu exceeds
twice the largest sphere radius.

3. Multiscale analysis, heterogeneity

Just like the experimental image, the reconstructed sam
was split into cubic blocks, with sizeNc

3 . The standard de
viations of the block porosities are given in Table II a
plotted versus the block size in Fig. 10, in comparison w
the measurements in the CMT image.

The comparison of the porosity standard deviationsē is
very good for block sizes up to 500mm, with an overesti-
mate by about 15% in the reconstructed sample. This a
ally corresponds to the prediction of Eq.~27!, with CZ given
by Eq. ~25! and the larger valuel527.9 mm. For larger
sizes,sē in the reconstructed sample reaches the expe
asymptotic regime (sē}L21.46,r 50.9999, for Nc>128),
since it does not contain any macroscopic features suc
the porosity step in Fig. 5~c!.

The spatial covarianceCē of the local porosities is plotted
in Fig. 11~b!. It follows the same trends as the data for t
experimental sample in Fig. 11~a!.

The statistical distribution of the local porosities is ve
similar to that in the real sample, as shown by Fig. 18, to
compared to Fig. 8 for the real sample.

As a whole, the statistical geometrical properties of
real sample on a scale up to 800mm are well reproduced in
the reconstructed one. The slight heterogeneity that coul
detected on a larger scale was not accounted for in the
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construction, and therefore, is absent in the numer
sample.

4. Topology, skeleton of the pore space

The pore-space skeleton was studied in the reconstru
sample and the results are compared with the data in the
one in Table III for the mean properties and in Fig. 12 f
their statistical distributions.

Examples of skeletons in 1283 blocks from the real and
simulated media are compared in Fig. 19. They look sim
on the large scale, in the sense that the skeletons do
penetrate in large regions of comparable extent. Howe
the skeleton in the reconstructed sample is more intricate
the small scale. Accordingly, the cyclomatic number in t
simulated material is about twice that in the real sample. T

FIG. 18. Histograms of the decimal logarithms of the porosit
~left! and conductivities~right! in cubic blocks from the recon-
structed experimental sample, for block sizesNc516, 32, 64, and
128 ~top to bottom!. The vertical broken lines are the statistic
averages.
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FIG. 19. Skeleton of the pore
space in 1283 blocks from the real
~a! and reconstructed~b! samples.
n

e

te
ge

h
fe

ic

u

th
e
Th
te
.
a

a
-
di
d

it
o

nd
i
a

ale
e-

ts
he
red

riza-
on-
ec-
ave
d-

rical

the
as

tion

the
ction
cts.
-
re
eal

ree-
en

ther
ud-
s of

d.
results from a larger densityNv8 of vertices, since the mea

coordination numbersz̄ are nearly identical. The differenc
in the distributions of the edge lengthsde confirms the visual
observations. Many edges longer than 150mm exist in the
real sample, which are totally absent in the reconstruc
one. Conversely, the latter contains more very short ed
with de;20 mm ;3px .

The mean edge and vertex radii,r ē and r v̄ are in perfect
agreement with the same quantities in the real sample. T
histograms in both samples are also very similar. The dif
ence in the radiusr M of the largest cavity is about 10mm,
but it corresponds to a single event and has little statist
meaning. Finally, the correlationsCee, Cev andCel between
the characteristics of the elements of the skeleton are q
similar to those in the real sample.

C. Percolation and conductivity

The percolation status and conductivity coefficients of
blocks of various sizes in the reconstructed sample w
computed as was done in the real sample in Sec. V C.
results are summarized in Table II, and they are plot
against the sizeNc of the measuring volumes in Fig. 10
They are in striking concordance with the corresponding d
for the real material.

Again, the sample is percolating on the large scale,
well as all the blocks withNc>256. The difference in per
colation probability between the real and simulated me
never exceeds 0.02, over the whole range of measuring
main size,Nc516 to 512, i.e., 0.1 to 3 mm.

The averagê D̄& and the standard deviations D̄ of the
block conductivities are also in excellent agreement w
those in the real sample within a few percents over the wh
range ofNc .

The correlation coefficient between local porosity a
conductivity in the reconstructed sample is also given
Table II. The only difference with the real medium is
smaller correlation for the largest blocks (Nc5256). This
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correlation in the real sample originated in the large sc
variation in porosity, which is absent in the simulated m
dium.

The statistical distribution of the local conductivity and i
relation to local porosity are also very similar to those in t
real sample, as shown by Figs. 18 and 20, to be compa
with Figs. 8 and 14 for the real sample.

VII. CONCLUDING REMARKS

We have presented in this paper a statistical characte
tion of grainlike consolidated porous media, and a rec
struction procedure conditioned by the size distribution sp
trum, without any adjustable parameter. These methods h
been illustrated by an application to a low-porosity san
stone, and yielded good agreements for various geomet
and transport-related features.

Perhaps the most outstanding result is the ability of
model to produce percolating media for porosities as low
0.07 ~and 0.04, with the present size distribution!, and to
accurately render the size dependence of local percola
probability.

In addition, the geometrical parameters measured on
pore-space skeleton are also obtained, and the condu
properties agree with those in the real sample in all respe
For all measuring block sizes,Nc516–256, the average con
ductivities, their fluctuations and statistical distributions a
in excellent concordance with their counterparts in the r
material.

Other geometrical and transport properties, such as th
and four-point correlations and permeability, have not be
tested here, but are systematically investigated in ano
study @25#, where several reconstruction procedures, incl
ing the present one, are applied starting from CMT image
more porous and heterogeneous sandstones.
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APPENDIX: DERIVATION OF THE SIZE DISTRIBUTION
OF POISSONIAN SPHERES FROM THE

TWO-POINT CORRELATIONS

The second derivative ofa can be obtained from Eq
~18b! as

d2a

du2
52

3u

8^R3&
E

u/2

1`

f ~R!dR52
3u

8^R3&
F12FS u

2D G .
~A1!

This directly yields the probability distributionF and density
f of the sphere radii

FS u

2D511
8^R3&

3u

d2a

du2
, ~A2a!

f S u

2D5
16

3
^R3&

d

duF1

u

d2a

du2G . ~A2b!

Alternatively, the size distribution can be quantified by t
volume-weighted density and distribution functionsms and
Ms . The densityms is defined by

ms~R!5
R3

^R3&
f ~R!. ~A3!

Note thatms differs from m in Eqs.~20! and ~21! since the
latter is the volume of spheres with radiusR inserted per unit

FIG. 20. ConductivityD̄ versus porosityē in cubic blocks from
the reconstructed sample, for block sizesNc516, 32, 64, and 128
~top to bottom!, in Cartesian~right! and logarithmic~left! coordi-

nates. Broken lines correspond toē in ~a! and toē2 in ~g!.
06130
total volume, whereasms(R) is measured per unit volume o
inserted solid. They are related by

m~R!52 ln e ms~R!. ~A4!

Equations~A2b! and ~A3! yield

msS u

2D5
2

3
u3

d

duF1

u

d2a

du2G , ~A5a!

MsS u

2D5
u2

3

d2a

du2
2u

da

du
1a21. ~A5b!

Equation~A5! gives the sphere size distribution that co
responds to a given two-point correlation function. In ad
tion, Eqs.~A2b! and ~A5a! provide the necessary and suffi
cient condition under which the functiona actually
corresponds to Poissonian spheres, namely, thatf or ms are
positive, i.e.,

d

duF1

u

d2a

du2G>0, for any lagu. ~A6!

FIG. 21. The functiona measured on the experimental samp
versus the lagu, and the sphere size distributionMs derived from
Eq. ~A5b! versus the radiusR. The broken line isMs obtained from
the measured distribution of covering radiusr c in Fig. 13.
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Finally, the probability functionsg and G of the covering
radius can also be deduced from the correlations. In view
Eqs.~11! and ~A4!,

Ms~R!52
1

ln eE0

R

m~r !dr

52
1

ln e
@ ln G~r !#0

R512
ln G~R!

ln e
. ~A7!

Therefore,

G~R!5e12Ms(R). ~A8!

The distributionMs obtained by applying Eq.~A5b! to the
J.

06130
of
function a deduced from the correlation measurements
the experimental sample is shown in Fig. 21. It compa
fairly well with the distributionMs derived from the mea-
sured distributionG(r c) of the covering radius up to radi
r c'60 mm'10 voxel size, even tough the criterion~A6! is
not satisfied foru'15 mm. Beyond this range, the sligh
anticorrelation that peaks atu5140 mm with a
52.0089 (RZ520.0017) strongly affectsMs . Other tests
without any anticorrelation~e.g., with the functiona mea-
sured on the reconstructed sample! have shown thatMs is
also very sensitive to small statistical fluctuations of t
long-range correlations. The erratic behavior ofMs for large
radii is strongly amplified inG(r c), due to the small value o
e in Eq. ~A8!.
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